Rc генератор применение. Генераторы на полевых транзисторах. LC генераторы синусоидальных колебаний
Генераторы с колебательным контуром незаменимы как источники синусоидальных высокочастотных колебаний. Для генерирования колебаний с частотами меньше 15…20 кГц они неудобны, так как колебательный контур получается слишком громоздким.
Другим недостатком низкочастотных LC – генераторов является трудность их перестройки в диапазоне частот. Все это обусловило широкое применение на указанных выше частотах RC- генераторов, в которых вместо колебательного контура используются частотные электрические RC-фильтры. Генераторы этого типа могут генерировать достаточно стабильные синусоидальные колебания в относительно широком диапазоне частот от долей герца до сотен килогерц. Они имеют малые размеры и массу, причем эти преимущества RC- генераторов наиболее полно проявляются в области низких частот.
4.2 Структурная схема rc-генератора
Данная схема изображена на рис. № 7.
Рис.№ 7. Структурная схема RC-автогенератора.
Схема содержит усилитель 1, нагруженный резистором и получающий питание от источника постоянного напряжения 3. Для самовозбуждения усилителя, т.е. для получения незатухающих колебаний, необходимо подать на его вход часть выходного напряжения, превышающее входное (или равное ему) и совпадающее с ним по фазе. Иначе говоря, усилитель необходимо охватить положительной обратной связью, причем четырехполюсник обратной связи 2 должен иметь достаточный коэффициент передачи. Эта задача решается в том случае, когда четырехполюсник 2 содержит фазосдвигающую цепь, состоящую из резисторов и конденсаторов сдвиг фаз между входным и выходным напряжениями 180 0 .
4.3 Принцип работы фазосдвигающей цепи
Схема которой показана на рис. № 8а, иллюстрируется с помощью векторной диаграммы рис. № 8б.
Рис.8. Фазосдвигающие цепи: а- принципиальная схема; б- векторная диаграмма; в,г- трехзвенные цепи
Пусть ко входу этой цепи RC подведено напряжение U1. Оно вызывает в цепи ток I, создающий падения напряжения на конденсаторе
(где ω-частота напряжения U1) и на резисторе U R =IR, которое одновременно является выходным напряжением U2. При этом угол сдвига фаз между током I и напряжением Uс равен 90 0 , а между током I и напряжением U R – нулю. Вектор напряжения U1 равен геометрической сумме векторов U C и U R и составляет с вектором U2 угол φ. Чем меньше емкость конденсатора С, тем ближе угол φ к 90 0 .
4.4 Условия самовозбуждения rc – автогенератора
Наибольший угол φ, который можно получить при изменении значений элементов RC- цепи, близок к 90 0 . Практически элементы схемы R и C подбирают так. Чтобы угол φ=60 0 . Следовательно, для получения угла сдвига фаз φ=180 0 , необходимого для выполнения условия баланса фаз. Требуется последовательно включить три звена RC.
На рис. № 8 в,г показаны два варианта схем трехзвенных фазосдвигающих цепей. Сдвиг фаз между выходным и входным напряжением на угол 180 0 при R1=R2=R3=R и C1=C2=C3=C обеспечивается на частотах: f 01 ≈(в схеме на рис. № 8в) и f 02 ≈(в схеме на рис. № 8г), где R выражено в омах, C- в фарадах, а f 0 - в герцах. Значения f 01 и f 02 одновременно частоту автоколебаний.
Для обеспечения баланса амплитуд коэффициент усиления усилителя К ус не должен быть меньше коэффициента передачи цепи обратной связи К о.с. =. Расчеты показывают, что для приведенных схем К о.с =. Таким образом, автоколебания в RC- генераторах, содержащих трехзвенные фазосдвигающие цепи с одинаковыми звеньями, возможно лишь при выполнении условий
f авт = f 01 (или f авт = f 02); К ус ≥29.
Генераторы синусоидальных колебаний выполняют с колебательным LC-контуром и частотно-зависимыми RC-цепями. LC-генераторы предназначены для генерирования сигналов высокой частоты (свыше нескольких десятков килогерц), а RC-генераторы используются на низких частотах (вплоть до единиц герц).
Генераторы LC-типа основаны на использовании избирательных LC-усилителей, обладающих узкой полосой пропускания. Условия для генерирования синусоидальных колебаний (8.1) и (8.2) создаются для частоты настройки f 0 колебательного контура, когда его сопротивление является чисто активным. Предпосылкой выполнения соотношения (8.1) для частоты f 0 служит изменение фазового сдвига j у , вносимого усилителем при отклонении частоты от резонансной, так как сопротивление резонансного контура перестает быть активным и приобретает реактивный (индуктивный или емкостный) характер. Справедливость соотношения (38) для резонансной частоты обусловливается максимальным значением коэффициента усиления на частоте f 0 .
Схемная реализация LC-генераторов достаточно разнообразна. Они могут отличаться способами включения в усилитель колебательного LC-контура и создания положительной обратной связи. Одна из схем LC-генераторов приведена на рис. 8.2.
Усилительный каскад выполнен на транзисторе VT , включенном по схеме ОЭ. Элементы R1, R2, R э, С э предназначены для задания режима покоя и температурной стабилизации. Выходной сигнал снимается с коллектора транзистора через разделительный конденсатор С р2 .
Параметрами колебательного контура являются емкость конденсатора С и индуктивность первичной обмотки w 1 трансформатора. Сигнал обратной связи снимается с вторичной обмотки w 2 , индуктивно связанной с обмоткой w 1 , и через разделительный конденсатор С р1 подается на вход транзистора. Необходимая фазировка напряжения обратной связи достигается соответственным подключением концов вторичной обмотки. Соотношение чисел витков первичной и вторичной обмоток w 1 /w 2 >1.
Если принять индуктивную связь М обмоток w 1 и w 2 идеальной, то для обеспечения баланса амплитуд необходимо, чтобы коэффициент передачи тока транзистора β в точке покоя удовлетворял соотношению β ≥ w 1 /w 2 .
Частота f генерируемых колебаний близка к резонансной частоте колебательного контура
Зависимость параметров L и С и параметров транзистора от температуры приводит к температурной зависимости частоты f . В условиях постоянства температуры нестабильность частоты вызвана изменением дифференциальных параметров транзистора от изменения положения точки покоя усилительного каскада.
Нестабильность частоты генераторов оценивают коэффициентом относительной нестабильности d f = Df/f * 100 %, где Df – абсолютное отклонение частоты от номинального значения f . Коэффициент относительной нестабильности частоты транзисторных LC-генераторов без принятия специальных добавочных мер стабилизации составляет единицы процента. Наибольшая стабильность частоты с коэффициентом d f = (10 -3 ¸ 10 -5) % достигается при использовании в генераторах кварцевого резонатора.
Генераторы LC-типа реализуют в виде гибридных интегральных микросхем, в которых реактивные элементы L и C применяют в качестве навесных.
Генераторы на частоты ниже нескольких десятков килогерц строят с помощью частотно-зависимых RC-цепей. В качестве усилительного звена обычно используют операционные усилители в интегральном исполнении. Схемы генераторов на ОУ приведены на рис. 8.3.
Принцип работы простейшего RC-генератора синусоидальных колебаний (рис. 8.3, а) заключается в том, что на определенной частоте фазовый сдвиг трех звеньев RC-цепи составляет j w = 180° .
Если такую цепь включить между выходом и инвертирующим входом ОУ, то общий фазовый сдвиг будет равен 360°, т.е. образуется положительная обратная связь. Частоту f 0 , при которой угол j w = 180 °, называют квазирезонансной. С параметрами R и C (R1 = R2 = R3||R 0 = R , C1 = C2 = C3 = C ) она связана соотношением
Такая цепочка ослабляет сигнал в 29 раз, поэтому для создания устойчивых колебаний необходимо, чтобы усилитель имел коэффициент усиления К ≥ 29. Тогда будет выполняться условие баланса амплитуд |Ќ||ẁ| ≥ 1 . Эту задачу решают выбором сопротивлений резисторов R 0 и R ос (К = R ос /R 0 ≥ 29 ).
Из RC-цепей, не осуществляющих сдвига по фазе передаваемого сигнала на квазирезонансной частоте, наибольшее распространение получила схема моста Вина. Схема генератора синусоидальных колебаний на ОУ с мостом Вина показана на рис. 8.3, б. Звено частотно-зависимой обратной связи C1 , R1 , C2 , R2 (мост Вина) включено между выходом и прямым входом ОУ. Элементы R 0 и R ос предназначены для получения требуемого коэффициента усиления усилительного звена.
На частоте генерации f 0 коэффициент передачи моста Вина w = 1/3, поэтому самовозбуждение генератора возможно при К > 3. Для неинвертирующего усилителя, который применяется в данной схеме, это соответствует выбору R ос /R 0 ≥ 3.
Применение генераторов с колебательными контурами для генерирования колебаний низких частот (ниже 10 кГц) затруднено из-за значительно увеличивающихся номиналов катушек индуктивности и конденсаторов, что влечет за собой увеличение размеров и стоимости генератора.
Поэтому в настоящее время для генерирования низких и инфранизких частот широко используются RC-генераторы, в которых вместо колебательного контура используются RC-фильтры.
RC-генераторы, работая в сравнительно широком диапазоне частот от долей герца до нескольких мегагерц, обеспечивают достаточную стабильность колебаний и имеют малые габариты и массу.
Применение полевых транзисторов в схемах RC-генераторов выгодно отличает их от биполярных транзисторов возможностью использования в цепи положительной обратной связи высокоомных резисторов, что в свою очередь позволяет использовать конденсаторы с меньшими номиналами, обладающие большей стабильностью.
Простейшие RC-генераторы на изображены на рис. 1. Как известно, условия возбуждения генератора требуют, чтобы цепь обратной связи изменяла на 180° (для однокаскадного генератора) фазу сигнала, поступающего со стоковой нагрузки в цепь затвора.
В схеме генератора, приведенной на рис. 1, а, это достигается выполнением цепи обратной связи из нескольких последовательно включенных простых RC-звеньев. Кроме того, ослабление сигнала при прохождении цепи обратной связи должно компенсироваться усилением каскада.
Для цепей с одинаковыми по значению элементами R и С условие баланса фаз на генерируемой частоте f 0 выполняется при следующих соотношениях :
для трёхзвенных f 0 =0,065/RC;
для четырёхзвенных f 0 =0,133/RC
Рис. 1. Схемы простейших RC-генераторов.
а - с фазирующей RC-цепочкой; б - с истоковым повторителем; в - с Т-образным RC-мостом.
Для трёхзвенной RC-цепи обратной связи требуемый коэффициент усиления каскада должен быть больше 29 , а в четырёхзвенной RC-цепи не менее 18,4.
Для повышения устойчивости работы генератора (из-за шунтирующего действия цепью обратной связи резистора нагрузки Rc) часто вводят дополнительный каскад - истоковый повторитель (рис. 1, б), имеющий высокое входное сопротивление.
Схема генератора с двойным Т-образным RC-фильтром (рис. 1, в), элементы которого выбраны следующим образом: С1=С2=С; С3=С/0,207; R1=R2=R; R3=0,207R - функционирует при условии, если коэффициент усиления каскада не менее 11. При этом частота колебаний
Рассмотренные простейшие RC-генераторы на ПТ не нашли широкого применения из-за присущих им недостатков.
Первый недостаток - это необходимость получения большого коэффициента усиления каскада, который у генератора с трёхзвенной цепью обратной связи должен быть не менее 29, Практическая реализация такого коэффициента усиления затруднительна из-за малого значения крутизны ПТ. Если учесть, что для улучшения формы генерируемых колебаний вводится отрицательная обратная связь, то коэффициент усиления каскада должен быть еще больше.
Второй недостаток - невозможность перестройки в широком диапазоне частот генераторов, выполненных по схеме с RC-цепочка-ми и Т-образным мостом в цепи обратной связи.
ГЕНЕРАТОРЫ, ПЕРЕСТРАИВАЕМЫЕ В ШИРОКОМ ДИАПАЗОНЕ ЧАСТОТ
Наиболее широкое применение среди RC-генераторов нашла схема с фазовым RC-мостом (генератор на мосте Вина), принципиальная схема которого изображена на рис. 2. К достоинствам подобной схемы следует отнести малое затухание и нулевой сдвиг фаз в цепи обратной связи на частоте генерации.
Таким образом, при включении фазового RC-моста для выполнения условия баланса фаз необходимо, чтобы усилитель генератора обеспечивал сдвиг фаз 360°.
Частота генерации при равенстве R1=R2=R и С1=С2=С определяется выражением
f 0 =1/2RCπ (1)
На этой частоте затухание фазового RС-моста минимально и равно 3. (Затухание β - величина ослабления, которое вносит фазовый RC-мост в проходящий сигнал в зависимости от расстройки Δf - определяется по выражению β=(9+(2Δf) 2 /f 0) 1/2) Отсюда следует, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, должно быть не менее 3. Благодаря малому значению требуемого усиления появляется возможность введения глубокой отрицательной обратной связи, что ведет к уменьшению уровня нелинейных искажений при работе в широком диапазоне частот.
В схеме рис. 2, а отрицательная обратная связь осуществляется за счет резистора в цепи истока транзистора T1 и введения цепочки R5C3. В качестве резистора R5 использовался малоинерционный термистор ТВД-4, резисторы R1, R2 - типа ПТМН, а конденсаторы С1 и С2 - типа КСО-Г. При указанных на схеме номиналах частота генерации f 0 =1500 Гц. При изменении температуры в диапазоне от 10 до 50° С была получена относительная нестабильность частоты
Δf/f=0,05% на 10° С.
Фазовый RC-мост имеет в своем составе всего по два одноименных элемента; следовательно, его можно перестраивать в широком диапазоне частот, изменяя значение только двух элементов R1, R2 или С1, С2), что делает перестройку генераторов с такими мостами конструктивно удобной.
На рис. 2, б приведена схема перестраиваемого генератора низкой частоты с фазовым RC-мостом. Частота генерируемых колебаний плавно перестраивается с помощью сдвоенного потенциометра R2, R3. Усилитель генератора двухкаскадный с непосредственной связью. Для стабилизации амплитуды колебаний генератора и его режима работы введена глубокая отрицательная обратная связь как по постоянному, так и переменному току (цепочка R8, R6, R5) Для перекрытия всего звукового диапазона следует ввести переключатель, который одновременно изменял бы емкости конденсаторов RC и С2 в обоих плечах моста.
Рис. 2. Принципиальные схемы генераторов с фазовым RС-мостом.
а - с двухкаскадным усилителем и ёмкостной связью; б - с двухкаскадным усилителем и непосредственной связью.
Рис. 3. Генератор, перестраиваемый в широком диапазоне
а - принципиальная схема; б - структурная схема.
Более сложная схема RС-генератора с использованием полевых транзисторов, позволяющая перестраивать частоту в декадном диапазоне, изображена на рис. 3. Для параметров, указанных на схеме, частота генератора лежит в диапазоне 500 кГц - 5 мГц; однако, изменив ёмкости конденсаторов, можно получить частоты в других диапазонах .
Два фазовращателя, фазоинвертор, усилитель и аттенюатор соединяются таким образом, что образуют петлю обратной связи. Схема будет генерировать колебания с частотой, при которой полный фазовый сдвиг составляет 360°. На этой частоте каждый из двух идентичных фазовращателей обеспечивает фазовый сдвиг на 90°.
Управляемый напряжением фазовращатель состоит из конденсатора C1 и транзистора Т2.
Транзисторы Т3, Т4 и конденсатор С3 образуют второй фазовращатель, который работает аналогично первому. Благодаря высокому сопротивлению фазовращателей отпадает необходимость в буферных каскадах. Затворы транзисторов Т2 и Т4 заземлены по переменному току и, следовательно, могут быть соединены. Транзистор Т5 предназначен для усиления сигнала.
Транзистор Т7 и резистор R6 образуют управляемый напряжением аттенюатор, при этом транзистор Т7 используется в качестве управляемого резистора.
Амплитудный детектор состоит из усилителя на транзисторе Т6, диодного детектора Д1 и фильтра R5C5. Когда амплитуда входного сигнала увеличивается, напряжение на затворе транзистора Т7 становится более отрицательным, при этом возрастает динамическое сопротивление транзистора и уменьшается коэффициент усиления в петле обратной связи.
СТАБИЛИЗАЦИЯ АМПЛИТУДЫ КОЛЕБАНИЙ
Свойство полевого транзистора изменять сопротивление канала в зависимости от приложенного к затвору управляющего напряжения нашло достаточно широкое применение в генераторах для автоматической стабилизации уровня выходного сигнала.
На рис. 4, а приведена схема RC-генератора синусоидальных колебаний с регулируемой отрицательной обратной связью . Двухкаскадный усилитель на полевых транзисторах Т1 и Т3 охвачен положительной обратной связью через элементы R1-R4, С1, С3. Отрицательная обратная связь осуществляется через делитель, состоящий из резистора R6 и управляемого сопротивления канала полевого транзистора Т2 Установление стационарной амплитуды происходит за счет воздействия UВых (через детектор Д1 и его элементов R7, С5) на глубину отрицательной обратной связи и на режим питания транзистора Т1. Инерционность АРУ определяется в основном ёмкостью конденсатора С5 и сопротивлением резистора R7 . Такая автоматически регулируемая отрицательная обратная связь позволяет повысить стабильность характеристик генератора по сравнению с обычной схемой при изменении напряжений питания и температуры окружающей среды. При изменении питания от 18 до 10 В амплитуда выходного сигнала снижалась на 8%.
Рис. 4. Генераторы со стабилизацией амплитуды генерируемых колебаний.
а - RС-генератор с регулируемой ООС; б - LC-генератор с аттенюатором на ПТ.
Несколько иначе осуществляется автоматическая стабилизация уровня выходного сигнала генератора, принципиальная схема которого изображена на рис. 4, б . Напряжение сток - исток полевого транзистора Т1 регулируется переменным резистором R3, установленным в цепи затвора второго транзистора Т2. Часть выходного напряжения через трансформатор L1, L2 поступает на выпрямитель Д1 и фильтр R3C7. В зависимости от положения потенциометра R3 изменяется рабочая точка полевого транзистора, изменяется сопротивление его канала и соответственно амплитуда сигнала на выходе генератора. Потенциометром R3 устанавливают необходимую амплитуду выходного напряжения, которая в дальнейшем автоматически поддерживается на заданном уровне.
Как видно из приведённых выше примеров, использование полевых транзисторов в схемах автоматической стабилизации выходного напряжения генераторов позволяет значительно упростить подобные схемы и уменьшить необходимую мощность управления регулируемого элемента.
ЧМ ГЕНЕРАТОРЫ
В автоматике и телемеханике, измерительной технике возникает необходимость в широкополосной частотной модуляции при низкой несущей частоте. Так, например, в радиотелеметрии с частотным разделением каналов каждому- каналу отводится своя поднесущая частота. Генераторы поднесущих частот - это низкочастотные генераторы, частоты которых промодулированы сигналами от датчиков. Применение LC-генераторов в таких системах нежелательно из-за громоздкости выполнения в низкочастотном диапазоне. Поэтому в качестве задающего частотно-модулированного генератора поднесущей частоты используется RС-генератор.
Частота RС-генератора, как уже говорилось выше, определяется параметрами фазирующей RС-цепочки, изменяя которые определенным образом, осуществляют частотную модуляцию колебаний генератора. Для получения линейной модуляционной характеристики необходимо, чтобы одновременно по линейному закону изменялись отношения 1/R или 1/С фазирующей цепочки.
Рис. 5. ЧМ генератор на ПТ, а - принципиальная схема; б - модуляционная характеристика.
В качестве перестраиваемых напряжением ёмкостей применяются полупроводниковые диоды и транзисторы, используя зависимость ёмкости p-n перехода от обратного напряжения. Существенным недостатком подобного способа является большая нелинейность модуляционной характеристики ЧМ генератора из-за нелинейного изменения ёмкости от приложенного напряжения.
Полупроводниковые диоды и биполярные транзисторы можно использовать и в качестве переменных сопротивлений. Однако такому способу получения ЧМ свойственны следующие недостатки : нелинейность модуляционной характеристики при больших девиациях частоты; большая амплитудная модуляция; плохая развязка источника модулирующего сигнала и автогенератора; значительная мощность, потребляемая управляющей цепью.
Перечисленных недостатков лишен способ осуществления ЧМ с помощью полевых транзисторов. Применение ПТ в качестве переменных сопротивлений в фазирующей цепи RС-генератора позволяет реализовать их важное достоинство - линейную зависимость проводимости канала от управляющего напряжения и высокое входное сопротивление частотного модулятора.
На рис. 5 изображена принципиальная схема ЧМ генератора с фазовым RС-мостом и его модуляционная характеристика для ПТ (Т{Г2) типа КП103Ж и КП103М, используемых в качестве переменных резисторов.
Резисторы R1 и R2 включены для уменьшения глубины девиации до необходимой; кроме того, используя резисторы с отрицательным ТКС, можно уменьшить влияние температурных изменений сопротивления канала ПТ на стабильность частоты генератора. С помощью источника смещения Eсм устанавливают необходимое значение сопротивления каналов ПТ при управляющем (модулирующем) сигнале UBX=0.
МУЛЬТИВИБРАТОРЫ
Релаксационные генераторы низких частот имеют большую постоянную времени. В мультивибраторах, выполненных на биполярных транзисторах, для получения большой постоянной времени используются электролитические конденсаторы с большой ёмкостью, обладающие невысокой стабильностью. Высокое же входное сопротивление полевых транзисторов позволяет получать необходимую постоянную времени в релаксационных схемах без использования конденсаторов с большой ёмкостью. Поэтому в тех случаях, когда требуется реализовать постоянные времени примерно несколько секунд или минут, целесообразно использовать полевые транзисторы.
В схеме, изображенной на рис. 6, а, два полевых транзистора включены по схеме истоковых повторителей, а два биполярных транзистора являются переключателями. Принцип работы схемы аналогичен принципу работы обычного мультивибратора, причём комбинацию биполярного и полевого транзистора следует рассматривать как некоторый активный элемент. Таким образом, в схему вносится высокое входное сопротивление полевых транзисторов и одновременно обеспечивается большое полное усиление. Биполярные транзисторы не входят в состояние насыщения, так как напряжение их коллекторов питает стоки полевых транзисторов. В результате такого соединения мультивибратор устойчиво самовозбуждается; поскольку рабочие точки транзисторов смещены в линейную область, любое изменение входного тока вызывает изменение коллекторного напряжения. Эта схема хорошо работает и на высоких частотах.
Рис. 6. Схемы мультивибраторов на ПТ.
а - с ненасыщенными биполярными транзисторами; б - с насыщенными биполярными транзисторами.
Длительность пребывания мультивибратора в каждом из состояний определяется разрядом конденсатора С1 или С2 через резистор цепи затвора. Когда напряжение достигает значения, равного напряжению отсечки полевого транзистора, изменение тока истока заставляет схему перейти в другое состояние. Если ёмкость каждого конденсатора С1 и С2 равна 4 мкФ, то, изменяя R1 и R2 в сторону увеличения, можно повысить длительность периода мультивибратора от 8 мс до 6 мин. Если ёмкость каждого из конденсаторов выбрать равной 100 пФ, то частоту можно изменить от 100 Гц до 3 мГц
Несколько иначе выполнен мультивибратор, схема которого изображена на рис. 6, б . Рассмотрим принцип действия этой схемы. Допустим, что транзистор Т1 переходит в состояние насыщения, тогда на затворе Т4 появляется положительный потенциал и транзисторы Т4 и Т2 закрываются. Скачок напряжения на коллекторе Т2 приводит к надежному открыванию транзисторов Т1 и Т3. Ток смещения, текущий к затвору Т3 через резистор R2, поддерживает его в этом состоянии. Конденсатор С1 разряжаясь через резистор уменьшает напряжение смещения на затворе Т4. Когда напряжение Uзи транзистора Т4 уменьшается до напряжения отсечки, транзисторы Т4 и Т2 начинают проводить и быстро открываются, в то время как Т1 и Т3 закрываются. Длительность импульса мультивибратора определяется по формуле
(2)
где Ес - напряжение источника питания.
При номиналах деталей, указанных на схеме рис. 8, б, получена длительность импульса примерно 25 с.
ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ
Используя источник неизменного тока на полевом транзисторе в генераторе пилообразного напряжения, можно получить пилу, линейность и наклон которой почти не зависят от случайных изменений управляющего напряжения. Кроме того, полевые транзисторы позволяют реализовать схемы генераторов развертки с такими значениями линейности и длительности, которых трудно достигнуть при использовании биполярных транзисторов.
Генератор пилообразного напряжения, изображенный на рис. 7, состоит из источника постоянного тока на полевом транзисторе T1, конденсатора переменной ёмкости С1 и однопереходного транзистора Т2. С помощью потенциометра R2 устанавливается значение постоянного тока стока полевого транзистора Т1, соответствующее термостабильной точке ПТ. Отрицательная обратная связь, создаваемая включенными в цепь истока резисторами R1 и R2 с большим сопротивлением, обеспечивает стабильный ток стока несмотря на наличие изменений напряжения питания. Этот ток линейно заряжает конденсатор переменной емкости С1 до напряжения запуска однопереходного транзистора Т2. Время заряда является функцией ёмкости конденсатора С1 .
Рис. 7. Схема генератора пилообразного напряжения.
Изменяя ёмкость конденсатора С1, можно регулировать частоту повторения выходного сигнала генератора в диапазоне от 500 Гц до 50 кГц. Накопительный конденсатор быстро разряжается через проводящий переключатель на транзисторе Т2. Пилообразное напряжение с конденсатора С1 подается на выход через эмиттерный повторитель на транзисторе Т3. Амплитуда выходного сигнала определяется положением движка потенциометра R4 и может регулироваться в пределах от 0 до 8 В . Во всём диапазоне частот нелинейность пилообразного напряжения в данной схеме не превышает 1%.
КВАРЦЕВЫЕ ГЕНЕРАТОРЫ
Одним из самых важных параметров генераторов является стабильность частоты генерируемых колебаний. Жёсткие требования к стабильности и воспроизводимости частоты в современных радиотехнических устройствах удается удовлетворить при использовании кварцевых генераторов.
Рис. 8. Схема кварцевого генератора.
Ламповые кварцевые генераторы в большинстве практических случаев являются неприемлемыми ввиду таких недостатков, как большая потребляемая мощность, большие габариты и масса. Кроме того, сама лампа является источником тепла, что затрудняет термостатирование генератора.
Ввиду малого входного сопротивления биполярных транзисторов кварцевый резонатор в автогенераторах включают только между базой и коллектором.
Полевые транзисторы, в которых отсутствуют перечисленные выше недостатки электронных ламп и биполярных транзисторов, в настоящее время достаточно часто используются в схемах кварцевых генераторов.
А.Г. Милехин
Литература:
- Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
- Барсуков Ф. И. Генераторы и селективные усилители низкой частоты. М., «Энергия», 1964.
- Гоноровский И. С Радиотехнические цепи и сигналы. М., «Советское радио», 1971.
- Ван дер Гиир. Перестройка RC-генератора в декадном диапазоне с помощью полевых транзисторов. - «Электроника», № 4, 1969.
- Крисилов Ю. Д. Автоматическая регулировка и стабилизация усиления транзисторных схем. М., «Советское радио», 1972.
- Проссер Л. Стабильные генераторы на полевых транзисторах. - «Электроника», 1966, № 20.
- Ханус, Мартинес. Стабильный НЧ мультивибратор с двумя ПТ. - «Электроника», 1967, №1.
- Илэд Л. Использование полевого транзистора для получения стабильного пилообразного напряжения. - «Электроника», 1966, № 16.
- Экспресс-информация «ПЭА и ВТ», 1973, № 47.
- Кинг Л. Стабильный кварцевый генератор на полевом транзисторе. - «Электроника», 1973, №13.
- Игнатов А.Н. Применение полевых транзисторов типа КП103 в аппаратуре связи. - В книге: Тенденции развития активных радиокомпонентов малой мощности. Новосибирск, "Наука", 1971.
RC -генератором называют генератор гармонических колебаний, в котором вместо колебательной системы, содержащей элементы L и С , применяется резистивно-емкостная цепь (RC -цепь), обладающая частотной избирательностью.
Исключение из схемы катушек индуктивности позволяет существенно уменьшить габариты и массу генератора, особенно на низких частотах, так как с понижением частоты резко увеличиваются размеры катушек индуктивности. Важным достоинством RC -генераторов по сравнению с LC -генераторами является возможность их изготовления по интегральной технологии. Однако RC -генераторы имеют низкую стабильность частоты генерируемых колебаний, обусловленную низкой добротностью RC -цепей, а также плохую форму колебаний в силу плохой фильтрации высших гармоник в спектре выходного колебания.
RC -генераторы могут работать в широком диапазоне частот (от долей герца до десятков мегагерц), однако нашли применение в аппаратуре связи и измерительной технике преимущественно на низких частотах.
Основы теории RC -генераторов были разработаны советскими учеными В. П. Асеевым, К. Ф. Теодорчиком, Э. О. Сааковым, В. Г. Криксуновым и др.
RC -генератор обычно включает в себя широкополосный усилитель, выполненный на лампе, транзисторе или интегральной схеме и RC -цепь обратной связи, обладающую избирательными свойствами и определяющую частоту колебаний. Усилитель компенсирует потери энергии в пассивных элементах и обеспечивает выполнение амплитудного условия самовозбуждения. Цепь обратной связи обеспечивает выполнение фазового условия самовозбуждения только на одной частоте. По виду цепи обратной связи RC -генераторы делятся на две группы:
с нулевым фазовым сдвигом в цепи обратной связи;
со сдвигом фазы в цепи обратной связи на 180.
Для улучшения формы генерируемых колебаний в RC -генераторах применяют элементы, обладающие нелинейностью, которые ограничивают нарастание амплитуды колебаний. Параметры такого элемента изменяются в зависимости от амплитуды колебаний, а не от их мгновенных значений (терморезистор, сопротивление которого зависит от степени нагрева проходящим через него током). При таком ограничении форма колебаний не меняется, они остаются гармоническими и в стационарном режиме.
Рассмотрим оба типа RC -автогенераторов.
Автогенератор со сдвигом фазы на 180 в цепи обратной связи.
Такой автогенератор еще называют автогенератором с трехзвенной цепью RC .
В схемах RC -генераторов со сдвигом фазы в цепи обратной связи на 180 используются усилители, инвертирующие фазу входного напряжения. В качестве такого усилителя может, например, использоваться операционный усилитель с инвертирующим входом, однокаскадный усилитель или многокаскадный усилитель с нечетным числом инвертирующих каскадов.
Для того, чтобы выполнялось уравнение баланса фаз, цепь обратной связи должна обеспечить фазовый сдвиг ОС = 180.
Для обоснования структуры цепи обратной связи воспроизведем фазочастотные характеристики простейших RC -звеньев (рис. 3,4).
Рис. 3 Вариант RC -звена и его ФЧХ
Рис. 4 Вариант RC -звена и его ФЧХ
Из графиков видно, что одно простейшее RC -звено вносит сдвиг фаз, не превышающий 90. Поэтому сдвиг по фазе величиной 180 можно осуществить путем каскадного соединения трех элементарных RC -звеньев (рис.5).
Рис. 5 Схемы и ФЧХ трехзвенных RC -цепей
Элементы RC -цепи рассчитываются так, чтобы на частоте генерации получить сдвиг фаз 180. Один из вариантов генератора с трехзвенной цепью RC показан на рисунке 6
Рис. 6 Генератор с трехзвенной цепью RC
Генератор состоит из резистивного усилителя на транзисторе и цепи обратной связи. Однокаскадный усилитель с общим эмиттером осуществляет сдвиг фазы между напряжением на коллекторе и базе К = 180. Следовательно, для выполнения баланса фаз цепь обратной связи должна обеспечивать на частоте генерируемых колебаний ОС = 180.
Проведем анализ цепи обратной связи, для чего составим систему уравнений по методу контурных токов.
Решая полученную систему относительно коэффициента обратной связи, получим выражение
Из выражения следует, что фазовый сдвиг 180 получается в том случае, когда будет вещественной и отрицательной величиной, т. е.
следовательно, генерация возможна на частоте
На этой частоте модуль коэффициента обратной связи
Это означает, что для возбуждения автоколебаний коэффициент усилителя должен быть больше 29.
Выходное напряжение генератора обычно снимают с коллектора транзистора. Для получения колебаний гармонической формы в цепь эмиттера включен терморезистор R Т с положительным температурным коэффициентом сопротивления. При увеличении амплитуды колебаний сопротивление R Т возрастает и увеличивается глубина отрицательной обратной связи в усилителе по переменному току, соответственно, падает коэффициент усиления. Когда наступает стационарный режим колебаний (К = 1), усилитель остается линейным и искажения формы коллекторного тока не происходит.
Автогенератор с нулевым фазовым сдвигом в цепи обратной связи.
Характерной особенностью схем RC -генераторов с нулевым фазовым сдвигом в цепи обратной связи является использование в них усилителей, не инвертирующих фазу входного сигнала. В качестве такого усилителя может, например, использоваться операционный усилитель с неинвертирующим входом или многокаскадный усилитель с четным числом инвертирующих каскадов. Рассмотрим некоторые возможные варианты цепей обратной связи, обеспечивающих нулевой фазовый сдвиг (рис. 7).
Рис. 7 Варианты цепей ОС, обеспечивающие нулевой фазовый сдвиг
Они состоят из двух звеньев, одно из которых представляет RС -звено с положительным фазовым сдвигом, а второе – с отрицательным сдвигом фазы. В результате сложения ФЧХ на определенной частоте (частоте генерации) можно получить фазовый сдвиг, равный нулю.
На практике наиболее часто в качестве избирательной цепи с нулевым фазовым сдвигом применяют фазобалансный мост, или по-другому мост Вина (рис. 7 в), применение которого показано в схеме RC -генератора с нулевым фазовым сдвигом, выполненного на операционном усилителе (рис. 8).
Рис. 8 RC -генератор с нулевым фазовым сдвигом в цепи ОС
В этой схеме напряжение с выхода усилителя подается на его неинвертирующий вход через цепь обратной связи, образованную элементами моста Вина R 1 C 1 и R 2 C 2 . Резистивная цепочка RR Т образует еще одну обратную связь – отрицательную, которая предназначена для ограничения нарастания амплитуды колебаний и сохранения их гармонической формы. Напряжение отрицательной обратной связи поступает на инвертирующий вход операционного усилителя. Терморезистор R Т должен иметь отрицательный температурный коэффициент сопротивления.
Коэффициент передачи цепи обратной связи
должен быть вещественной и положительной величиной, а это возможно при выполнении равенства
Отсюда определяется частота генерируемых колебаний. Если R 1 = R 2 =R , C 1 = C 2 = C , то
Амплитудное условие самовозбуждения на частоте 0 требует выполнения неравенства
При равенстве R 1 = R 2 = R и C 1 = C 2 = C коэффициент усиления К > 3.
Частоту колебаний можно изменять путем изменения сопротивлений R или емкостей конденсаторов С , входящих в состав моста Вина, а амплитуда колебаний регулируется сопротивлением R .
Основное преимущество RC -генераторов перед LC -генераторами заключается в том, что первые легче реализовать для низких частот. Например, если в схеме генератора с нулевым фазовым сдвигом в цепи обратной связи (рис. 8) R 1 = R 2 = 1 МОм, C 1 = C 2 = 1 мкФ, то генерируемая частота
.
Чтобы получить такую же частоту в LC -генераторе, потребовалась бы индуктивность L = 10 16 Гн при С = 1 мкФ, что трудно осуществить.
В RC -генераторах можно, изменяя одновременно величины емкостей С 1 и С 2 , получить более широкий диапазон перестройки частоты, чем это имеет место в LC -генераторах. Для LC -генераторов
в то время как для RC -генераторов, при С 1 = С 2
К недостаткам RC -генераторов следует отнести тот факт, что на относительно высоких частотах они труднее реализуются, чем LC -генераторы. Действительно, величину емкости нельзя снизить меньше емкости монтажа, а уменьшение сопротивлений резисторов приводит к падению коэффициента усиления, что затрудняет выполнение амплитудного условия самовозбуждения.
Перечисленные достоинства и недостатки RC -генераторов обусловили их применение в низкочастотном диапазоне с большим коэффициентом перекрытия по частоте.
RC-генераторы относятся к классу автоколебательных систем
релаксационного типа. Основными элементами такого генератора являются
усилитель и апериодические звенья, составленные из резисторов и
конденсаторов. Не имея в своем составе колебательного контура, такие
генераторы, тем не менее, позволяют получать колебания, близкие по форме к
гармоническим. Однако при сильной регенерации системы, когда используются
существенно нелинейные области характеристики усилителя, форма колебаний,
ввиду отсутствия колебательного контура, сильно искажается. Поэтому
генератор должен работать при незначительном превышении порога
самовозбуждения.
Основными достоинствами генераторов RC-типа являются простота и
малые габариты. Эти преимущества особенно ярко проявляются при
генерировании низких частот. Для генерирования частот порядка 100 Гц в
LC-генераторах (генераторах Томсона) потребовались бы весьма большие
значения индуктивностей и емкостей
В предыдущей главе рассматривались LС-автогенераторы. Они применяются на высоких частотах. Если же необходимо генерировать низкие частоты, применение LС-генераторов становится затруднительным. Почему? Всё очень просто. Поскольку формула для определения частоты генерирования колебаний выглядит вот так:
то нетрудно заметить, что для уменьшения частоты необходимо увеличивать емкость и индуктивность контура. А увеличение емкости и индуктивности напрямую влечёт увеличение габаритных размеров. Другими словами, размеры контура при этом будут гигантскими. А со стабилизацией частоты дело будет обстоять ещё хуже.
Поэтому придумали RC-автогенераторы, которые здесь мы и рассмотрим.
Наиболее простым RC-генератором является так называемая схема с трехфазной фазирующей цепочкой, которая ещё называется схемой с реактивными элементами одного знака. Она показана на рис. 1.
Рис. 1 - RC-автогенератор с фазовращающей цепочкой
Из схемы видно, что это всего-навсего усилитель, между выходом и входом которого включена цепь, которая переворачивает фазу сигнала на 180º. Эта цепь называется фазовращающей. Фазовращающая цепочка состоит из элементов С1R1, C2R2, C3R3. С помощью одной цепочки из резика и кондера можно получить сдвиг фаз не более чем на 90º. Реально же сдвиг получается близким к 60º. Поэтому для получения сдвига фазы на 180º приходится ставить три цепочки. С выхода последней RC-цепи сигнал подается на базу транзистора.
Работа начинается в момент включения источника питания. Возникающий при этом импульс коллекторного тока содержит широкий и непрерывный спектр частот, в котором обязательно будет и необходимая частота генерации. При этом колебания частоты, на которую настроена фазовращающая цепь, станут незатухающими. Для колебаний остальных частот условия самовозбуждения выполняться не будут и они, соответственно, быстро затухают. Частота колебаний определяется по формуле:
При этом должно соблюдаться условие:
R1=R2=R3=R
C1=C2=C3=C
Такие генераторы способны работать только на фиксированной частоте.
Помимо рассмотренного генератора с использованием фазовращающей цепи имеется ещё интересный, кстати, наиболее употребительный, вариант. Посмотрим на рис. 2.
Рис. 2 - Пассивный полосовой RC-фильтр с частотно-независимым делителем
Так вот, эта самая конструкция представляет собой так называемый мост Вина-Робинсона, хотя наиболее часто встречается название просто мост Вина. Ещё некоторые грамотеи пишут мост Вина с двумя "н".
Левая часть энтой конструкции представляет собой пассивный полосовой RC-фильтр, в точке А снимается выходное напряжение. Правая часть есть ни что иное, как частотно-независимый делитель. Принято считать, что R1=R2=R, C1=C2=C. Тогда резонансная частота будет определяться следующим выражением:
При этом модуль коэффициента усиления максимален и равен 1/3, а фазовый сдвиг нулевой. Если коэффициент передачи делителя равен коэффициенту передачи полосового фильтра, то на резонансной частоте напряжение между точками А и В будет равно нулю, а ФЧХ на резонансной частоте делает скачок от -90º до +90º. Вообще же должно выполнятся условие:
Конечно, все как обычно рассматривается в идеальном или приближенном к идеальному случаях. Ну а реально дело, как всегда, обстоит немного хуже. Поскольку каждый реальный элемент моста Вина имеет некоторый разброс параметров, даже незначительное несоблюдение условия R3=2R4 приведет либо к нарастанию амплитуды колебаний вплоть до насыщения усилителя, либо к затуханию колебаний или полной их невозможности.
Для того, чтобы было совсем понятно, втулим в мост Вина усилительный каскад. Для простоты воткнем операционный усилитель (ОУ).
Рис. 3 - Простейший генератор с мостом Вина
Вообще же именно так использовать эту схему не получится, поскольку в любом случае будет разброс параметров моста. Поэтому вместо резика R4 вводят какое-либо нелинейное или управляемое сопротивление. К примеру, нелинейный резик, управляемое сопротивление с помощью транзисторов, как полевых, так и биполярных, и прочая хрень. Очень часто резик R4 в мосте заменяют микромощной лампой накаливания, динамическое сопротивление которой с ростом амплитуды тока увеличивается. Нить накаливания обладает достаточно большой тепловой инерцией, и на частотах несколько сотен герц уже практически не влияет на работу схемы в пределах одного периода.
Генераторы с мостом Вина обладают одним хорошим свойством: если резики R1 и R2 заменить переменным, но только сдвоенным, то можно будет регулировать в некоторых пределах частоту генерации. Можно и кондеры С1 и С2 разбить на секции, тогда можно будет переключать диапазоны, а сдвоенным переменным резиком плавно регулировать частоту в диапазонах. Для тех, кто в танке, почти практическая схема генератора с мостом Вина показана на рисунке 4.
Рис. 4 - RC-генератор с мостом Вина
Итак, мост Вина образуют кондеры С1-С8, сдвоенный резик R1 и резики R2R3. Переключателем SA1 осуществляется выбор диапазона, резиком R1 - плавная регулировка в выбранном диапазоне. ОУ DA2 представляет собой повторитель напряжения для согласования с нагрузкой.